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METHOD AND ARCHITECTURE FOR
AI-ASSISTED SUPERVISION FOR A
CONTROLLED SYSTEM

RELATED APPLICATION

This application claims the benefit of U.S. Provisional
Application No. 63/350,711, titled “Design Architecture for

Al-Assisted Design for a Controlled System,” by mnventors
Christoforos Somarakis, Erfaun Noorani, Raman Goyal,
Aleksandar B. Feldman, and Shantanu Rane, filed 9 Jun.

2022, the disclosure of which 1s incorporated by reference
herein.

FIELD

Background

This disclosure 1s generally related to the field of artificial
intelligence (Al). More specifically, this disclosure 1s related
to a system and method for facilitating an Al-based super-
visor for a controlled system.

Related Art

A cyber-physical system can be a computer system in the
operations can be controlled or monitored by a computing
device, such as a hardware- or software-based controller.
The controller can operate based on one or more algorithms
that can control the cyber-physical system. A cyber-physical
system can sufler anomalies (e.g., faults or malicious
attacks) that can lead to disruption to the operations. Hence,
quick and eflicient methods of detection and 1solation of the
anomalies are necessary for operating the cyber-physical
system.

The exponential growth of Al-based techniques, such as
learning mechanisms, has made them a popular medium for
monitoring complex systems. Reinforcement Learning (RL)
models have become a popular mechanism for learning the
parameter space associated with a controlled system. To do
so, an RLL model can be trained based on rewarding target
behaviors and punishing unwanted behaviors. As a result, an
RL agent can determine the environment represented by the
parameter space and learn through 1terations.

SUMMARY

Embodiments described herein provide a supervisor for
fault management at a production system. During operation,
the supervisor can obtain a set of sensor readings and a state
of the production system. A respective sensor reading 1s an
output of a sensor in the production system. The supervisor
can then determine, using an artificial intelligence (AI)
model, whether the set of sensor readings accommodates a
fault associated with a corresponding sensor. Subsequently,
the supervisor can determine an action that mitigates an
cllect of the fault and modify the set of sensor readings
based on the action. Here, the modified set of sensor
readings 1s used by a controller that controls the production
system.

In a variation on this embodiment, the supervisor can
identily the sensor associated with the fault. The supervisor
can then modily the set of sensor readings by modifying a
sensor reading of the identified sensor.

In a variation on this embodiment, the supervisor can
determine the action by determining a reference signal for
the production system and determining the action such that
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2

the controller maintains the target behavior of the production
system. The reference signal can indicate a target behavior
of the production system.

In a further variation, the state can include an adjusted
state generated by the controller for maintaining the target
behavior of the production system. The adjusted state can
then be generated based on a previously modified set of
sensor readings.

In a variation on this embodiment, the production system
can include a plurality of sensors measuring a same element.
The supervisor can combine respective sensor readings from
the plurality of sensors based on a fusion scheme.

In a vaniation on this embodiment, the Al model can
include a Reinforcement Learning (RL) agent trained based
on system dynamics of the production system.

In a variation on this embodiment, the Al model can be
trained to learn a policy that includes detecting the fault at
a time of occurrence and incorporating the action mitigating
the fault.

In a further varniation, the policy can also include one or
more of: determining a magnitude of the fault and i1denti-
fying a sensor associated with the fault.

In a variation on this embodiment, the fault can include
one or more of: a time-varying fault and a dynamic fault.
The time-varying fault can appear and disappear during
operation of the production system. On the other hand, the
dynamic fault can change during operation of the production
system.

In a variation on this embodiment, the action can include
adding respective mitigating values to the set of sensor
readings to mitigate the effect of the fault.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an exemplary supervised environment
that supports an Al-assisted supervised controlled system, in
accordance with an embodiment of the present application.

FIG. 2A 1illustrates an exemplary supervised controlled
system, 1n accordance with an embodiment of the present
application.

FIG. 2B illustrates an exemplary sensor fusion scheme for
a supervised controlled system, in accordance with an
embodiment of the present application.

FIG. 3 illustrates an exemplary controlled water supply
system, 1n accordance with an embodiment of the present
application.

FIG. 4 presents a flowchart 1llustrating a method of a
supervisor mitigating a fault associated with a controlled
system, 1in accordance with an embodiment of the present
application.

FIG. § presents a flowchart illustrating a method of a
supervisor mitigating and localizing a fault associated with
a controlled system, in accordance with an embodiment of
the present application.

FIG. 6 illustrates an exemplary computer system that
facilitates an Al-based supervisor for a controlled system, 1n
accordance with an embodiment of the present application.

FIG. 7 illustrates an exemplary apparatus that facilitates
an Al-based supervisor for a controlled system, 1n accor-
dance with an embodiment of the present application.

In the figures, like reference numerals refer to the same
figure elements.

DETAILED DESCRIPTION

The following description 1s presented to enable any
person skilled in the art to make and use the embodiments,
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and 1s provided in the context of a particular application and
its requirements. Various modifications to the disclosed
embodiments will be readily apparent to those skilled 1n the
art, and the general principles defined herein may be applied
to other embodiments and applications without departing
from the spirit and scope of the present disclosure. Thus, the
embodiments described herein are not limited to the embodi-
ments shown, but are to be accorded the widest scope
consistent with the principles and features disclosed herein.
Overview

The embodiments described herein solve the problem of
ciiciently supervising a controlled system for protecting
from anomalies (e.g., faults or attacks) by augmenting the
controlled system with a supervisor that can monitor sensor
signals, detect and localize unknown sensor faults, and
perform a mitigating action. The controlled system aug-
mented by the supervisor can be referred to as a supervised
controlled system and 1s based on a bi-level control design
architecture that supports the isolation of the faulty sensors
and mitigation of the effects of the fault 1n an online fashion.

With existing technologies, model-based diagnostics may
require 1ntrinsic prior knowledge of model dynamics. For
example, Fault Tolerant Control (F1C) methods rely on
prior knowledge of the abnormalities and their effects on the
system, such as known system dynamics and faults. The
performance of such model-based approaches can be limited
by model maccuracies. Such approaches can also be sensi-
tive to model misspecification. The traditional design 1s
typically composed of a fault detection module that may
detect a fault and select a low-level controller specific to the
fault from a set of predefined fault controllers. Since the
tault 1s detected and mitigated sequentially, such as approach
can delay the response, which might de-stabilize the system.

Such limitation can be mitigated using Blended Control
(BC), which can use a hierarchical design with a weighted
combination of low-level controllers. The weights with
which the controllers get combined constitute a blending
weight vector, which 1s set by a high-level control module.
A deep-learning BC design can use an algorithm to set the
blending weights to provide a data-driven approach to BC.
Such an approach may eliminate the need for prior knowl-
edge of the system dynamics. In such architecture, the
high-level control effectively implements the low-level con-
troller and does not directly interact with the controlled
system. However, BC designs may synthesize a fault-toler-
ant controller that can be intrusive and may not facilitate
tault localization.

To solve this problem, embodiments described herein
provide a supervisor for the controlled system. The super-
visor can be a supervisory Reinforcement Learning (RL)
agent that can be augmented with the controlled system. The
augmented system can be referred to as a supervised con-
trolled system. The supervisor, facilitated by the RL agent,
can monitor sensor signals from the controlled system,
detect and localize the sensor faults, and perform corre-
sponding mitigating actions. In this way, the supervisor can
enable the diagnosis of arbitrary constant sensor faults. For
example, the controlled system can be a linearized version
of a chemical process with multiple sensors, controlled by a
Linear Quadratic Gaussian (LQG) Servo-Controller with
Integral Action. The supervisor augmented to this system
can 1solate the faulty sensors and mitigate the effects of the
fault in an online fashion.

The supervised controlled system can converge towards
cooperative synergy between the supervisor and the con-
trolled system while mitigating and localizing unknown,
constant sensor faults. In this example, an over-observed
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linear time-invariant controlled plant can support a chemical
process. The plant can be prone to actuator and sensor
noises. A low-level plant controller can regulate the system
output based on a reference signal by minimizing a plant-
relevant quadratic cost function. The output can be prone to
multiple unknown faults that eflectively perturb the system
state towards potentially undesirable domains.

An RL agent can be trained to learn aspects of system
dynamics, detect the onset of faults, approximate their
magnitude, and perform a mitigating action to manage the
faults without aflecting the performance of the plant. Even
though the examples described herein are based on linear-
1zed chemical processes, such an RL agent can also be used
for security, fault detection, and fault mitigation for general
uncertainty or nonlinear systems, such as unmanned aerial
vehicles (UAVs) (e.g., drones), temperature control 1n build-
ings, general supervisory control and data acquisition
(SCADA) and 1ndustrial systems, and power grids, etc.

The supervisor, which can be an RL agent, can supervise
the outputs of the sensors of a controlled system (e.g., a
plant). The supervisor can monitor and protect the control
system from undesirable eflects of faults or attacks. The
supervised controlled system, because of its high-level
architecture, can provide robust to inherent system nonlin-
carities, plant parametric uncertainties, the presence of vari-
ous several sources of noise, time delays, etc. "

The core
advantage of the supervisor i1s the combination of model-
based and data-driven techniques. Initially, the model-based
techniques can be used to develop a supervisor that can be
used to navigate agents towards desired policies for the
controlled system. Subsequently, the supervisor can be
trained to converge by data-driven training to the desired
policies. The training process can be agnostic to the system
dynamics of the controlled system. Such an approach
reduces intervention on the controlled system while being
casily generalizable and scalable.

Exemplary Supervised Controlled System

FIG. 1 illustrates an exemplary supervised environment
that supports an Al-assisted supervised controlled system, in
accordance with an embodiment of the present application.
In this example, a supervised environment 100 can include
a controlled system 110 that can include a producer module
112 that can operate as a plant (e.g., for producing an object)
based on the outputs of a set of sensors 114. A controller 116
can manage and control producer module 112 to generate an
output based on a reference signal. In some embodiments,
controller 116 can be a closed-loop low-level controller,
such as proportional-integral-derivative (PID), model pre-
dictive control (MPC), and Linear Quadratic Gaussian
(LQG) controller. Controller 116 can also be based on a
trained Al model (e.g., a tramned RL agent).

With existing technologies, model-based diagnostics for
system 110 may require intrinsic prior knowledge of the
dynamics of system 110. For example, FTC methods may
rely on prior knowledge of the abnormalities associated with
system 110 and their effects on system 110. The performance
of such model-based approaches can be limited by the
inaccuracies of the models. Such approaches can also be
sensitive to misspecification for system 110. The traditional
design can include incorporating a fault detection module
into system 110 that may detect a fault and select a low-level
controller specific to the fault from a set of predefined fault
controllers 1n system 110. Since the fault 1s detected and
mitigated sequentially, such as approach can delay the
response, which might de-stabilize system 110.

Such limitation can be mitigated using BC-based hierar-
chical design with a weighted combination of low-level
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controllers for system 110. The weights with which the
controllers get combined constitute a blending weight vec-
tor, which 1s set by a high-level control module. A deep-
learning BC design can use an algorithm to set the blending
weilghts to provide a data-driven approach to BC. Such an
approach may eliminate the need for prior knowledge of the
dynamics of system 110. In such architecture, the high-level
control effectively implements the low-level controller and
does not directly interact with system 110. However, BC
designs may synthesize a fault-tolerant controller that can be
intrusive for system 110 and may not facilitate fault local-
ization in sensors 114.

To solve this problem, a supervisor 120 can be deployed
system 110. The supervisor can be a supervisory Reinforce-
ment Learning (RL) agent that can be augmented with
system 110. The augmented system can be referred to as
supervised controlled system 130 (or supervised system
130). Supervisor 120, which can include an RL agent, can
monitor sensor signals from system 110, detect and localize
the faults associated with sensors 114, and perform corre-
sponding mitigating actions 140. In some embodiments,
mitigating actions 140 can include adding corresponding
mitigating values to the respective readings of sensors 114.
The mitigating values mitigate the faulty reading from a
sensor associated with a fault. For example, 11 the correct
reading of a sensor 1s A and a faulty reading 1s (A+B), the
mitigating value can be (-B). As a result, upon application
ol action 140, the sensor reading can become A.

In this way, supervisor 120 augmented to this system 110
can enable the diagnosis of arbitrary constant faults associ-
ated with sensors 114, 1solate the faulty sensor(s) 1in sensors
114, and mitigate the effects of the fault 1n an online fashion
based on actions 140. Since the mitigating values can be
added 1n such a way that the faulty readings are mitigated,
controller 116 can remain agnostic to the faults. Hence,
supervised system 130, because of 1ts high-level architec-
ture, can provide robust to inherent system nonlinearities,
plant parametric uncertainties, the presence of various sev-
eral sources of noise, time delays, etc.

For example, system 110 can be a linearized version of a
chemical process plant (1.e., producer 112) with multiple
sensors (1.e., sensors 114), controlled by a LQG Servo-
Controller (1.e., controller 116) with Integral Action. In other
words, system 110 can be an over-observed linear time-
invariant controlled plant supporting a chemical process.
Producer 112 can be prone to actuator and sensor noises.
Low-level plant controller 116 can regulate the output of
system 110 based on a reference signal by minimizing a
plant-relevant quadratic cost function. The output can be
prone to multiple unknown faults that effectively perturb the
states of system 110 towards potentially undesirable
domains.

Supervised system 130 can converge towards cooperative
synergy between supervisor 120 and system 110 while
mitigating and localizing unknown, constant faults associ-
ated with sensors 114. A development system 160 can train
an RL agent 150 to learn aspects of system dynamics
associated with system 110, detect the onset of faults,
approximate their magnitude, and perform a mitigating
action to manage the faults without aflecting the perfor-
mance of system 110. Development system 160 can run on
an application server 104 reachable via a network 106. Here,
network 106 can be a local or wide area network, such as a
virtual local area network (VLAN) or the Internet, respec-
tively. Even though the examples described herein are based
on linearized chemical processes, RL agent 150 can also be
used for security, fault detection, and fault mitigation for
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general uncertainty or nonlinear systems, such as UAVs,
temperature control, SCADA and industrial systems, and
power grids, etc.

The core advantage of RL agent 150 1s the combination of
model-based and data-driven techniques. Initially, develop-
ment system 160 can use the model-based techniques to
develop RL agent 150 that can be used to navigate agents
towards desired policies for system 110. Subsequently,
development system 160 can train RL agent 150 to converge
by data-driven training to the desired policies. For example,
RL agent 150 can be trained based on traiming data 122 on
an application server 104. Tramning data 122 can include
operating information associated with system 110. For
example, training data 122 can include data with estimation
of physical states of system 110 obtained based on obser-
vation or through dynamic filters (e.g., a Kalman or Particle
filter). The training process can be agnostic to the system
dynamics of system 110. Such an approach reduces inter-
vention on system 110 while being easily generalizable and
scalable.

Development system 160 can also determine a diagnostic
module 152 for supervisor 120. Diagnostic module 152 can
sense 1mformation from controlled system 110 in an online
fashion, and fuse and supply a supervisory agent 150 (e.g.,
RL agent 150) of supervisor 120 with corresponding data to
supervisory agent 150 to take actions 140 that can mitigate
sensor faults. In some embodiments, actions 140 can include
sending a time-delayed signals and/or asynchronous
response from agent 150 due to communication constraints.
Development system 160 can 1identify the underlying system
dynamics of system 110 and low-level controller 116.
Development system 160 can then identily sensors 114 and
sensor fusion schemes that combine data from multiple
SENsors.

Development system 160 can determine a feature extrac-
tion module (1.e., the module that obtains information from
system 110). For example, the extraction module can be
diagnostic module 152 determining fault information from
sensors 114. Development system 160 can determine the
action space, observation space, an objective (e.g., the
reward function), and an Al-based algorithm (e.g., an opti-
mization scheme) and associated hyper-parameters. Devel-
opment system 160 can then train supervisory agent 150
accordingly. Subsequently, development system 160 can
deploy supervisory agent 150 and diagnostic module 152 for
underlying system 110 (via network 106).

Here, supervisor 120 can facilitate a method for fault
detection and mitigation 1n controlled system 110. To do so,
development system 160 can generate supervisory agent 150
with an observation space and an action space based on the
configuration of system 110 and expected location of pos-
sible faults (e.g., sensors 114). Development system 160 can
synthesize reward functions based on lower-level system
information, expected location of possible faults, and sensor
fusion architecture. Subsequently, development system 160
can use formal methods to choose reward function param-
cters so that the optimal policy learnt by agent 150 1ncludes
the detection of mjected faults drawn from known distribu-
tion 1nterval at the time of their occurrence.

Moreover, development system 160 can use formal meth-
ods to choose reward function parameters so that the optimal
policy learnt by agent 150 includes approximating the
magnitude of 1injected faults drawn from known distribution
interval at the time of their occurrence. In addition to the
approximation, development system 160 can use formal
methods to choose reward function parameters so that the
optimal policy learnt by agent 150 includes mitigation of
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mjected faults drawn from known distribution interval.
Development system 160 can also use formal methods to
choose reward function parameters so that the optimal
policy learnt by agent 150 includes localizing the exact
location of a respective injected fault drawn from known
distribution interval.

The developed agent 150 can be trained using training
data 122, which can include data with estimation of physical
states of system 110 obtained based on observation or
through dynamic filters (e.g., a Kalman or Particle filter).
Based on the training based on the reward function, diag-
nostics module 152 can diagnose dynamic and/or time-
varying faults that appear and disappear during the operation
of system 110. Similarly, supervisor 120 can also diagnose
faults that may change with time during the operation of
system 110. Here, producer 112°s system dynamics and
controller 116 can be nonlinear. Upon detecting the faults,
agent 150 can perform actions 140, which can include
time-delayed signals and/or asynchronous response from
agent 150 due to communication constraints.

System Architecture

FIG. 2A 1llustrates an exemplary supervised controlled
system, in accordance with an embodiment of the present
application. In this example, system 110 1s designed to have
output 232 (denoted as y) based on reference signal 222
(denoted as r). Producer 112’s state 224 (denoted as X) can
be used by sensors 114 to generate output 232. Here,
producer 112 can be exposed to actuator anomalies 238
(denoted as 1), which indicate the errors or faults associated
with the operating mechanism of producer 112. For
example, the error can be due to a physical distortion (or
imperiection) present 1n an element (e.g., an actuator) of
producer 112. Producer 112 can also be impacted by noise
226 produced by sensors 114 (denoted as 77). Here, a
respective sensor may include fundamental inaccuracy due
to noise sources (e.g, (Gaussian noise).

During operation, sensors 114 can incur unknown faults
228 (denoted as f). Here, sensors 114 can be vulnerable to
additive faults, which can be indicated by constant, but
uncertain, bias. Controller 116 may not recognize the source
of faults 228. As a result, controller 116 may regulate system
110 1n such a way that state 224 may not correspond to the
desired state. In particular, adjustment logic 204 of control-
ler 116 may determine adjusted state 234 (denoted as X) for
producer 112 from state 224 to obtain based on output 232
that incorporates faults 228. As a result, feedback logic 202
of controller 116 can send a control signal 236 to producer
112 change one or more operations (e.g., a production rate)
of producer 112. The changed operations of producer 112
can then change the current state of producer 112 changes to
adjusted state 234. Since adjusted state 234 corresponds to
faults 228, the changed operations of producer 112 can
diverge from reference signal 222.

Supervisor 120 can include diagnostic module 152 that
can sense information from controlled system 110 1n an
online fashion. Subsequently, diagnostic module 152 can
provide a supervisory agent 150 corresponding data to
enable agent 150 to take actions 140 that can mitigate faults
228. To determine supervisor 120, development system 160
can explore the underlying system dynamics of system 110.
If system 110 1s linear, the state of system 110 at time t+1 can
be x, ,=Ax +Bu+I'¢ , where x is state 224 of system 110, u
is low-level control signal 236, and & indicates actuator
anomalies 238 (e.g., noise) with known statistics. Further-
more, ['e R ">E . can be the diffusion matrix associated
with the noise source for producer 112.
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State x can be observed by sensors 114. Sensors 114 can
include sensors deployed in SCADA and other industrial
systems. Sensors 114 can consist of an ensemble of inde-
pendent sensors that monitor state X with corresponding
uncertainties. The number of sensors 1n sensors 114 can be
s. Accordingly, each sensor measurement can also be prone
to possible fault injection. Linear filtering of state for all
sensors can 1mply:

Here, a respective sensor 1n sensors 114 can sense state x
based on C,x along with additive sensor noise r1 and
potential fault ©.

Development system 160 can also determine a sensor
fusion scheme for sensors 114. A mapping h, (-) can indicate
with which measurements from all sensors are combined to
yield aggregate output signal:

— (1}
V=hAy,

This signal 1s typically provided to controller 116 for further
analysis and control of producer 112. In some embodiments,
h, (-) can be the average of all measurements, which can be:

1 &
i = ;Z | Cox, + Nt + 9|,
k=1

Controller 116 can use sensor fusion output, y,, and 1mple-
ment an output-feedback control strategy u =K (y,) for a
particular purpose. The purpose 1n this example can be the
aggregation of output y, to track reference signal r, with
respect to corresponding mean value.

In supervised system 130, agent 150 can perceive the state
and sensor measurements of system 110 through diagnostic
module 152 that processes flow of the mput data and
contributes to the observation space of agent 150. Agent 150
can then perform actions 140 on system 110 through an
embedded compartment (1.e., an action space). Here, the
action space corresponds to the optimization of a cost
function to achieve given security objectives. At the begin-
ning of each learning episode, agent 150 can start in an
initial agent state. At each time-step, agent 150 can receive
an observation (e.g., from diagnostic module 152) and
execute actions 140 (e.g., by adding an adjustment value to
the sensor measurement) according to a policy and a map-
ping from the observation to an action. In some embodi-
ments, agent 150°s actions 140 can also be based on a
smooth parametrized function, such as a Neural Network.

Upon the execution of actions 140, system 110 transitions
to a successor state. Accordingly, agent 150 can receive an
instantaneous cost ¢,. If agent 150 1s an RL agent, the desired
cost measure of system 110 can be an expectation of a
log-run objective. An example of such an objective can be
the expected cumulative cost J:=E[X,_,’c,] over an episode.
This expectation can dictate the policy’s trajectory distribu-
tion. Once agent 150 1s trained, agent 150 can be deployed
to run simultaneously 1n parallel with system 110 1n super-
vised system 130.

In this example, system 110 can use three types of input
signals from system 110 at each time-step (1.e., for each t) as
the set of observations agent 150. Accordingly, the obser-
vation space of agent 150 can include control signal u, (e.g.,
signal 236), the adjusted state X (e.g., a state estimate from
adjustment logic 204), and sensor residuals defined as y,“'—
C,X,. Subsequently, agent 150 can apply actions 140 on

controller 116 through additive intervention on sensors 114
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(1.e., by adding respective mitigating values to the readings
of sensors 114). The integration of agent 150 into the system
dynamics of system 110 can be expressed as:

v,=Cx AN, 940, “4a X k=1, . . ., 5.

In other words, agent 150, by design, intervenes 1n sensors
114 with actions 140. In some embodiments, sensors 114 can
include a set of sensors. Actions 140 can then include a set

of actions for the corresponding set of sensors. Beyond the
intervention to sensors 114, agent 150 may operate without
information regarding the location and magnitude of the
fault. Here, the objective of agent 150 can include applying
action 140 at each time-step (i.e., at each t) that mitigates the
injection of faults into system 110.

Development system 160 can use a Deep Deterministic
Policy Gradient (DDPG) based RL algorithm that can be
applied to continuous action-spaces and yield a deterministic
policy. Accordingly, the architecture of supervised system
130 can {facilitate the mitigation of faults 228 without
extensively searching the parameter space or possible hyper-
parameters. Here, the cost function for the RL algorithm 1s
developed for online security. Given the low-level system
dynamics of system 110, sensors 114, and corresponding
diagnostic tasks, agent 150 can be determined on the design
principles J that can achieve a cooperation between the
control hierarchies (1.e., between controller 116 and super-
visor 120). By taking the tracking faults 228 at each time-
step as the instantaneous cost, agent 150 can try to learn a
mapping from the observations to actions, a policy, that
minimizes J for particular forms of instantaneous costs c,.

The 1nitial instantaneous costs for training agent 150 can
be indicated by c=||Cxr/|°, where

1
C=-%,C
Y

1s me cumulative output matrix from the sensor fusion
scheme. Since faults 228 may also be caused by attacks on
system 110, c, can facilitate a cybersecurity objective of
deploying an RL policy that learns to secure producer 112
from uncertain, constant injected attacks. Hence, the policy
that minimizes long term cost J for such choice of ¢, can be
translated into agent 150°s actions 140 that negates cumu-
latively the effect of all faults present in system 110. In
particular, the policy can be present in the following set:

M={ae R . 3, q0=—3 ¢y,

where s 1s the number of sensor and n,, 1s the dimension of
sensor signals. Here, M can be a mitigation space wherein
agent 150 can mitigate faults 228 but may not characterize
the origin (1.e., detect sensor 1s faulty).

In addition to mitigation of faults 228 1n system 110,
supervisor 120 may also determine the origin of faults 228.
To associate a respective fault to a corresponding sensor,
development system 160 can train agent 150 to minimize:

&
e =ICx = rl? + Y |Fuy® = Goy||
k=1

for design matrices F, and G, that satisfy conditions asso-
ciated with the architecture of sensors. Here, matrices F, and
G, can be found that satisty F,.C,=G,C, Vk=1, ... .,s. If
matrices F, and G, and system dynamics of system 110
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satisty positive definiteness properties, the policy that agent
150 1s set to navigate can be present in the following space:

ML L =fae R goo__gon

This implies that agent 150 can learn the fault associated
with a respective sensor, approximate the magnitude of the
fault, and mitigate the fault.

In some embodiments, system 110 can be over-observed
where sensors 114 can include a plurality of sensors (e.g.,
s>1) that observe system 110°s state independent of each
other. FIG. 2B illustrates an exemplary sensor fusion scheme
for a supervised controlled system, 1in accordance with an
embodiment of the present application. Sensors 114 can
include a plurality of sensor sets 252, 254, and 256. A
respective sensor set can facilitate a particular measurement
(1.e., measures the same element). For example, one sensor
set can measure temperature while another sensor set can
measure pressure. An aggregator 250 can aggregate the
measurements for a respective sensor set based on a sensor
fusion scheme.

The fusion scheme can be based on one or more of:
average, weighted average, and weighted sum. In this
example, sensor set 252 can 1nclude sensors 262, 264, and
266. Aggregator 250 can determine aggregated or fused
sensor value 272 by applying the sensor fusion scheme on
the sensor values (or readings) of sensors 262, 264, and 266.
In the same ways, aggregator 250 can determine aggregated
sensor values 274 and 276 by aggregating respective values
of sensor sets 254 and 256, respectively.

FIG. 3 illustrates an exemplary controlled water supply
system, 1n accordance with an embodiment of the present
application. In this example, a controlled water supply
system 300 that can facilitate a controlled chemical process.
System 300 can be controlled by a Linear Quadratic Gauss-
1an controller 330 that supports action that regulates tracking
of output with respect to r. A supervisor 340 can be embed-
ded into system 300 for supervision so that system 300 can
confinue to regulate its output around r. Supervisor 340 can
include a trained RL agent. Hyper-parameters of the DDPG
algorithm can be set to predetermined values. The RL agent
of supervisor 340 can be trained to optimize cost J with c,.

System 300 can include water tanks 302, 304, and 306 for
hot water, adjusted water, and cold water, respectively.
Hence, the system state, x,, can indicate the level of water 1n
tanks 304 and 306, and the temperature of water in tank 304
at time t. The control inputs, u,, can be respective control
signals to flow pumps 312 and 314, valve 316, and heater
310 from controller 330. The objective of controller 330 is
to regulate state vector around a reference value r that
dictates the target level of water in tanks 304 and 306, and
the target temperature of water 1n tank 304.

System 300 can include a sensor module 320 that can
provide sensor readings 322 indicative of water levels 1n
tanks 304 and 306, and water temperature of tank 304. Here,
system 300 can be over-observed by s sensors in sensor
module 320. In some embodiments, the sensors can be
identical with C,=I,. The linearized representation of system
300 can satistfy x,, ,=Ax+Bu+I'€, with specific values of
state and 1nput matrices. Sensors 1n sensor module 320 can
be prone to arbitrary/random but constant faults. Supervisor
340 can perform one or more actions 324 to mitigate the
faults.

Operations

FIG. 4 presents a flowchart 400 illustrating a method of a
supervisor mitigating a fault associated with a controlled
system, 1n accordance with an embodiment of the present
application. During operation, the supervisor can determine
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a policy for a controlled system such that the impacts of
faults associated with the sensor outputs are mitigated
(operation 402). The supervisor can then obtain signals
representing the observation space from controlled system
(and track the corresponding reference signal) (operation
404). The supervisor can also obtain the respective outputs
of sensors of the controlled system and determine the
existence ol faults based on the feasible fault space for a
respective sensor (operation 406).

The supervisor can then determine whether a fault 1s
detected (operation 408). If a fault 1s detected, the supervisor
can incorporate corresponding actions to respective outputs
of the sensors to mitigate the faults based on the policy
(operation 410). On the other hand, if a fault 1s not detected
(operation 408) or upon incorporating the actions (operation
410), the supervisor can allow outputs of the sensors to
proceed to the controller of the controlled system (operation
412).

FIG. 5 presents a flowchart 500 illustrating a method of a
supervisor mitigating and localizing a fault associated with
a controlled system, 1n accordance with an embodiment of
the present application. During operation, the supervisor can
determine a policy for a controlled system such that a fault
associated with a respective sensor 1s localized and miti-
gated (operation 502). The supervisor can then obtain sig-
nals representing the observation space from controlled
system (and track the corresponding reference signal) (op-
eration 504). The supervisor can also obtain the respective
outputs of sensors of the controlled system and determine
the existence of faults based on the feasible fault space for
a respective sensor (operation 506).

The supervisor can then 1solate closed-loop faults from
the sensor outputs (operation 308) and determine whether a
tault associated with a sensor 1s detected (operation 510). If
a fault associated with a sensor i1s detected, the supervisor
can 1dentily a respective sensor associated with the fault
(operation 512) and incorporate a corresponding action to
the output of the faulty sensor(s) to mitigate the fault(s)
based on the policy (operation 514). On the other hand, if a
fault 1s not detected (operation 310) or upon incorporating
the action (operation 314), the supervisor can allow outputs
ol the sensors to proceed to the controller of the controlled
system (operation 516).

Exemplary Computer System and Apparatus

FIG. 6 illustrates an exemplary computer system that
tacilitates an Al-based supervisor for a controlled system, 1n
accordance with an embodiment of the present application.
Computer system 600 includes a processor 602, a memory
device 604, and a storage device 608. Memory device 604
can include a volatile memory device (e.g., a dual in-line
memory module (DIMM)). Furthermore, computer system
600 can be coupled to a display device 610, a keyboard 612,
and a pointing device 614. Storage device 608 can store an
operating system 616, a supervisory system 618, and data
636. Supervisory system 618 can facilitate the operations of
parameter manager 110.

Supervisory system 618 can include instructions, which
when executed by computer system 600 can cause computer
system 600 to perform methods and/or processes described
in this disclosure. Specifically, supervisory system 618 can
include instructions for obtaining system dynamics of a
controlled system (system module 620). Supervisory system
618 can also include instructions for determining a policy
associated with fault mitigation and/or localization for the
controlled system (policy module 622).

Furthermore, supervisory system 618 includes instruc-
tions for obtaining inputs, such as the reference signal,
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sensor data and adjusted state from the controlled system
(input module 624). Supervisory system 618 can also
include 1nstructions for determining the sensor fusion
scheme of the controlled system (fusion module 626). More-
over, supervisory system 618 can include instructions for
diagnosing faults (e.g., unknown and constant faults) (diag-
nostics module 628). Supervisory system 618 can further
include instructions for incorporating mitigating actions to
the sensor data (or sensor reading) of the sensors of the
controlled system (action module 630).

Supervisory system 618 can also include instructions for
localizing a fault (i.e., identifying the sensor(s) associated
with a fault) (learning module 632). Supervisory system 618
may further include instructions for sending and receiving
messages (communication module 634). Data 636 can
include any data that can facilitate the operations of one or
more of supervised system 130 of FIG. 1. Data 636 may
include one or more of: training data, underlying system
dynamics of the controlled system, sensor data, the reference
signal, and operational policy.

FIG. 7 illustrates an exemplary apparatus that facilitates
an Al-based supervisor for a controlled system, 1n accor-
dance with an embodiment of the present application. Super-
visory apparatus 700 can comprise a plurality of units or
apparatuses which may communicate with one another via a
wired, wireless, quantum light, or electrical communication
channel. Apparatus 700 may be realized using one or more
integrated circuits, and may include fewer or more units or
apparatuses than those shown 1n FIG. 7. Further, apparatus
700 may be integrated 1n a computer system, or realized as
a separate device that 1s capable of communicating with
other computer systems and/or devices. Specifically, appa-
ratus 700 can comprise units 702-716, which perform func-
tions or operations similar to modules 620-634 of computer
system 600 of FIG. 6, including: a system unit 702; a policy
unit 704; an mput unit 706; a fusion unit 708; a diagnostics
unit 710; an action unit 712, a localization unit 714, and a
communication unit 716.

The data structures and code described 1n this detailed
description are typically stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system. The
computer-readable storage medium 1includes, but 1s not
limited to, volatile memory, non-volatile memory, magnetic
and optical storage devices such as disks, magnetic tape,
CDs (compact discs), DVDs (digital versatile discs or digital
video discs), or other media capable of storing computer-
readable media now known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored 1n a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-
readable storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.

Furthermore, the methods and processes described above
can be included in hardware modules. For example, the
hardware modules can include, but are not limited to,
application-specific integrated circuit (ASIC) chips, field-
programmable gate arrays (FPGAs), and other program-
mable-logic devices now known or later developed. When
the hardware modules are activated, the hardware modules
perform the methods and processes included within the
hardware modules.

The foregoing embodiments described herein have been
presented for purposes of 1illustration and description only.
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They are not mtended to be exhaustive or to limit the
embodiments described herein to the forms disclosed.
Accordingly, many modifications and vanations will be
apparent to practitioners skilled in the art. Additionally, the
above disclosure 1s not intended to limit the embodiments
described herein. The scope of the embodiments described
herein 1s defined by the appended claims.

What 1s claimed 1s:

1. A method for fault management at a production system,
the method comprising:

obtaining, by a computer system, a set of sensor readings

and a state of the production system, wherein a respec-
tive sensor reading 1s an output of a sensor in the
production system:;

providing the set of sensor readings and the state of the

production system to a Reinforcement Learning (RL)
agent trained based on data indicating physical states of
the production system:;

determining, using the RL agent, whether the set of sensor

readings includes at least a faulty reading produced by
a corresponding faulty sensor;

determining an action that adjusts a value of the faulty

reading; and

modifying the set of sensor readings based on the action,

wherein the modified set of sensor readings 1s used as
an 1nput to a controller that controls the production
system.

2. The method of claim 1, further comprising 1dentifying,
the faulty sensor;

wherein adjusting the value of the faulty reading further

comprises adding a value to a sensor reading of the
faulty sensor.

3. The method of claim 1, wherein determining the action
turther comprises:

determining a reference signal for the production system,

wherein the reference signal indicates a target behavior
of the production system; and

determining the action such that the controller maintains

the target behavior of the production system.

4. The method of claim 3, wherein the state includes an
adjusted state generated by the controller for maintaining the
target behavior of the production system, and wherein the
adjusted state 1s generated based on a previously modified
set of sensor readings.

5. The method of claim 1, wherein the production system
comprises a plurality of sensors measuring a same element;
and

wherein the method further comprises combining respec-

tive sensor readings from the plurality of sensors based
on a fusion scheme.

6. The method of claim 1, wherein tramning of the RL
agent 1s agnostic to system dynamics of the production
system.

7. The method of claim 1, wherein the RL agent 1s trained
to learn a policy that includes detecting a fault associated
with the faulty sensor at a time of occurrence and 1ncorpo-
rating the action.

8. The method of claim 7, wherein the policy further
includes one or more of:

determining a magnitude of the fault; and

identifying the faulty sensor.

9. The method of claim 7, wherein the fault includes one
or more of:

a time-varying fault that appears and disappears during

operation of the production system; and

a dynamic fault that changes during operation of the

production system.

5

10

15

20

25

30

35

40

45

50

55

60

65

14

10. A non-transitory computer-readable storage medium
storing 1nstructions that when executed by a computer cause
the computer to perform a method for fault management at
a production system, the method comprising;:
obtaining a set of sensor readings and a state of the
production system, wherein a respective sensor reading
1s an output of a sensor 1n the production system:;

providing the set of sensor readings and the state of the
production system to a Reinforcement Learning (RL)
agent trained based on data indicating physical states of
the production system;

determining, using the RP agent, whether the set of sensor

readings includes at least a faulty reading produced by
a corresponding faulty sensor;

determining an action that adjusts a value of the faulty

reading; and

moditying the set of sensor readings based on the action,

wherein the modified set of sensor readings 1s used as
an mput to a controller that controls the production
system.

11. The non-transitory computer-readable storage
medium of claim 10, wherein the method further comprises
identifying the faulty sensor;

wherein adjusting the value of the faulty reading further

comprises adding a value to a sensor reading of the
faulty sensor.

12. The non-transitory computer-readable storage
medium of claim 10, wherein determining the action further
COmMprises:

determining a reference signal for the production system,

wherein the reference signal indicates a target behavior
of the production system; and

determining the action such that the controller maintains

the target behavior of the production system.

13. The non-transitory computer-readable storage
medium of claim 12, wherein the state includes an adjusted
state generated by the controller for maintaining the target
behavior of the production system, and wherein the adjusted
state 15 generated based on a previously modified set of
sensor readings.

14. The non-transitory computer-readable storage
medium of claim 10, wherein the production system com-
prises a plurality of sensors measuring a same element; and

wherein the method further comprises combining respec-

tive sensor readings from the plurality of sensors based
on a fusion scheme.

15. The non-transitory computer-readable storage
medium of claim 10, wherein training of the RL agent 1s
agnostic to system dynamics of the production system.

16. 'The non-transitory computer-readable storage
medium of claim 10, wherein the RL agent 1s trained to learn
a policy that includes one or more of:

detecting a fault associated with the faulty sensor at a time

ol occurrence;

incorporating the action;

determinming a magnitude of the fault; and

identifying the faulty sensor.

17. The non-transitory computer-readable storage
medium of claim 16, wherein the fault includes one or more
of:

a time-varying fault that appears and disappears during

operation of the production system; and

a dynamic fault that changes during operation of the

production system.

18. A computer system, comprising:

a storage device;

a Processor;
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a non-transitory computer-readable storage medium stor-
ing 1nstructions, which when executed by the processor
causes the processor to perform a method for fault
management at a production system, the method com-
prising:
obtaining a set of sensor readings and a state of the
production system, wherein a respective sensor read-
ing 1s an output of a sensor 1n the production system:;

providing the set of sensor readings and the state of the
production system to a Reimnforcement Learning
(RL) agent trained based on data indicating physical
states of the production system;

determining, using the RL agent, whether the set of
sensor readings includes at least a faulty reading
produced by a corresponding faulty sensor;

determining an action that adjusts a value of the faulty
reading; and

moditying the set of sensor readings based on the
action, wherein the modified set of sensor readings 1s
used as an mput to a controller that controls the
production system.

19. The computer system of claim 18, wherein the method

turther comprises identifying the faulty sensor;

wherein adjusting the value of the faulty reading further
comprises adding a value to a sensor reading of the
faulty sensor.

20. The computer system of claim 18, wherein a fault

associated with the faulty sensor includes one or more of:

a time-varying fault that appears and disappears during
operation of the production system; and

a dynamic fault that changes during operation of the
production system.
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